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Context & 
Motivation

In May 2023, the WHO declared the end of the COVID-
19 global Public Health Emergency, marking a new 
endemic phase

However, COVID-19 continues to have lasting effects, 
notably Post-COVID-19 Condition (PCC) — persistent 
physical and cognitive symptoms following recovery

Recent global estimates suggest a 6–10% prevalence, 
down from initial 10–20% WHO estimates

Identifying populations at risk of PCC is essential for 
early referral and optimized care pathways
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Research 
Challenges & 

Data 
Opportunity

PCC characterization remains uncertain, with 
key challenges:
• Incomplete, retrospective data collected during the evolving 

crisis
• Focus on hospitalized patients, despite most PCC cases 

occurring in non-hospitalized individuals
• Limited information on pre-existing conditions, complicating 

symptom attribution

Lifelines Cohort offers a unique opportunity:
• 167,729 participants from Northern Netherlands across three 

generations
• COVID-19 branch (Apr 2020 – Nov 2022):

• 31 questionnaires, weekly to bi-monthly
• 76,503 respondents, average 13.5 questionnaires each

• Rich longitudinal data enable analysis of pre-infection factors
and PCC trajectories
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Aim & 
Contributions

Research Question:
• Can pre-infection parameters predict the severity of Post-

COVID-19 Condition?

Approach:
• Introduce Post-COVID-19 Symptom Intensity (PCSI) as a 

continuous measure of PCC severity
• Apply machine learning models to Lifelines data to predict 

PCSI and identify risk factors

Key Contributions:
• Statistical identification of influential factors associated with 

PCC
• Predictive modeling of PCSI using data-driven techniques
• Interpretation of variable impact for medical decision-making
• Development of an open-source Python package for 

reproducible ML analysis
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Dataset 
Overview
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• Static variables: Fixed individual attributes (e.g., age, sex, 
variant, income, smoking, chronic diseases, vaccination 
status, time between vaccination and infection)

• Dynamic variables: Symptom presence and intensity over 
time (before, during, and after infection)
• Includes headache, cough, fever, breathing difficulties, 

muscle pain, loss of smell/taste, etc.

Two main variable types:

• Substantial missing and inconsistent data (common in 
questionnaire-based studies)

• Evolving questionnaire design during the epidemic → 
variable phrasing and coverage

• Required extensive standardization to build a uniform 
analytical dataset

Data Challenges:



Definition of Post-Covid Condition based on the WHO one

Symptoms lasting more than 3 months post infection lasting for at least 2 
months with no other explanation.

Use of 10 symptoms checked to be related to PCC in a previous study

Extension to a continuous variable by deriving the Post Covid-19 symptom 
intensity score (PCSI)
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Definition of Post COVID-19 symptom intensity (PCSI) 
using symptoms (symp)

Defining Post-
COVID-19 
Symptom 

Intensity (PCSI)



• Raw questionnaire data organized by participant and date
• Merged across tables after cleaning and variable harmonization
• Feature extraction based on pre-infection period (steady-state 

hypothesis)

Data Integration:

• 4,657 participants included after filtering for sufficient data
• Comparable baseline characteristics between included and 

excluded groups
• Sex distribution:

• Women = 73% of PCC cases vs. 64% in base dataset → higher 
PCC risk in women

• Lower PCSI levels show a reduced female proportion

Final Study Sample:
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Data preparation 
strategy

Preprocessing 
Workflow & 

Sample 
Selection
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ቐ
𝐻0: 𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

𝐻1: 𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

Statistical 
Tests
 

Tests Used:
• Chi-square test → checks independence between categorical variables (e.g., 

vaccination & PCSI
• Cramer's V → measures strength of association (0 = weak, 1 = strong)

Vaccination & PCSI:
• Majority of fully vaccinated participants had low PCSI (88% scored 1–2)
• Chi-square: significant relationship (p < 0.05)
• Cramer's V = 0.072: weak association strength

Insight:
• Vaccination status is significantly associated with lower PCC intensity, but the 

strength of this association is relatively small in practical terms
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Multiple 
Correspondence 

Analysis (MCA)

Method
• MCA was applied to explore 

simultaneous relationships 
between multiple categorical 
variables

Key patterns
• High PCSI (5) clusters with chronic 

diseases, poor health, and female 
sex, indicating higher vulnerability in 
these groups

• SARS-CoV-2 variant shows weak 
association with PCC, suggesting a 
lower impact on long-term symptom 
intensity

• Participants with better general 
health are positioned closer to low 
PCSI levels, indicating a protective 
effect



• To be robust to data variation during the training and evaluation , the cross-validation 
strategy is adopted

• The final results are reported using mean and standard deviation over multiple folds

Evaluation pipeline

Cross validation

The model  𝑓:𝑿 → 𝑦
• With 𝑿 ∈ ℝ𝒑 representing the explanatory variables (features) of dimension 𝑝
• And 𝑦 representing the target variable corresponding to  the long covid intensity with 

𝑦 ∈ [1; 5]

Predictive 
analysis
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• Linear Ridge Regression (LR)

• Random Forest (RF)
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• Mean Absolute Error (MAE)
• Mean Squared Error (MSE)
• Mean Absolute Percentage Error (MAPE)
• Pearson Correlation

• Gradient Boosting (GB)

• Multi-layer Perceptron (MLP)

Methods 
and 

evaluation 
criteria

Evaluated methodsEvaluated methods

Evaluation criteria



• Best performance achieved with “All” features across all methods

• Symptom-only features yield similar results for LR, RF, GB; MLP 
benefits more from full feature sets

• MAE ≈ 0.60 for all models → acceptable error on a 1–5 PCSI scale

• MLP shows lowest MAPE (0.19), minimizing relative errors

• RF and GB yield the highest Pearson correlations, capturing complex 
linear interactions

13 COMPARISON BETWEEN VARIOUS INTRODUCED MODELS AND
FEATURES COMBINATION FOR PREDICTION OF PCSI

Results
Differences reflect model 
strengths:
• RF/GB: strong linear patterns → 

higher correlations
• MLP: non-linear modeling → 

better error minimization
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Estimated coefficients of Linear Regression for 

prediction of  post COVID-19 condition

Top 9 features identified via Linear Regression

• Coefficients show direction & strength of impact on PCSI
• Positive predictors (↑ PCC risk):

• Loss of smell, headache, muscle pain
• Negative predictors (↓ PCC risk):

• Fever, pain when breathing

Insights

• Acute symptoms differ in predictive value — some signal higher long-term 
risk, others appear protective

Interpretation

Linear 
Regression
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15 Feature importances resulted using Random Forest 
model for prediction of PCSI

Top 10 features identified using Random Forest
• Shows some overlap with Linear Ridge Regression results, but relative 

importance differs

Key Predictors:
• Muscle pain → most important predictor of PCSI
• Time between vaccination and infection (VACCIN_TTI) → significant impact
• Insight:

• Vaccination timing may influence PCC risk and severity
• RF highlights non-linear interactions not captured by linear models

Interpretation

Random 
Forest
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Top predictors for PCSI (via SHAP values):
• Positive impact (↑ PCSI): difficulty breathing, diarrhea, fluctuating body 

temperature, muscle pain, sneezing, smoking
• Negative impact (↓ PCSI): prior vaccination, absence of chronic diseases

Other insights:
• Female sex associated with higher PCSI
• Highlights the complex interaction of symptoms, baseline health, and 

demographics in PCC risk
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Interpreting MLP influential 
factors using 
SHAP values

Interpretation

SHAP 
values
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Conclusions 
and 

perspectives
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Study Goal:
• Identify high-risk PCC profiles and predict Post-COVID Symptom 

Intensity (PCSI) using ML

Key Findings:
• Higher risk: women, patients with chronic diseases
• Important predictors: loss of smell, headache, muscle pain, 

vaccination timing
• Protective factors: absence of chronic diseases
• MLP slightly outperformed other models (lower MAPE)

Limitations:
• Steady-state assumption limits temporal analysis
• Dataset quality and completeness affect performance
• Models complement, not replace, clinical judgment

Societal Impact:
• PCC affects health, daily life, and productivity
• Predicting symptom intensity can guide early interventions and improve 

patient outcomes
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Thank you for your attention!

Questions?
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