# Statistical and Predictive analysis to Identify Risk Factors and Effects of Post COVID-19 Syndrome

Milad Leyli-abadi\*, Jean-Patrick Brunet<sup>+</sup> Sonja van Ockenburg<sup>+</sup>, Axel Tahmasebimoradi\*

IRT SystemX, Palaiseau, France \*
University Medical Center Groningen, Netherlands †







#### Introduction

Context and motivation

Data and statistical analysis

Predictive analysis of long COVID intensity

Conclusions and perspectives

### Outline

# Context & Motivation

In May 2023, the WHO declared the end of the COVID-19 global Public Health Emergency, marking a new endemic phase

However, COVID-19 continues to have lasting effects, notably Post-COVID-19 Condition (PCC) — persistent physical and cognitive symptoms following recovery

Recent global estimates suggest a **6–10% prevalence**, down from initial 10–20% WHO estimates

Identifying populations at risk of PCC is essential for early referral and optimized care pathways

# Research Challenges & Data Opportunity

# **PCC characterization remains uncertain**, with key challenges:

- Incomplete, retrospective data collected during the evolving crisis
- Focus on hospitalized patients, despite most PCC cases occurring in **non-hospitalized individuals**
- Limited information on **pre-existing conditions**, complicating symptom attribution

#### **Lifelines Cohort** offers a unique opportunity:

- 167,729 participants from Northern Netherlands across three generations
- COVID-19 branch (Apr 2020 Nov 2022):
  - 31 questionnaires, weekly to bi-monthly
  - 76,503 respondents, average 13.5 questionnaires each
- Rich longitudinal data enable analysis of pre-infection factors and PCC trajectories

# Aim & Contributions

#### **Research Question:**

• Can pre-infection parameters predict the severity of Post-COVID-19 Condition?

#### Approach:

- Introduce Post-COVID-19 Symptom Intensity (PCSI) as a continuous measure of PCC severity
- Apply machine learning models to Lifelines data to predict PCSI and identify risk factors

#### **Key Contributions:**

- Statistical identification of influential factors associated with PCC
- Predictive modeling of PCSI using data-driven techniques
- Interpretation of variable impact for medical decision-making
- Development of an open-source Python package for reproducible ML analysis

## Dataset Overview

#### Two main variable types:

- **Static variables:** Fixed individual attributes (e.g., age, sex, variant, income, smoking, chronic diseases, vaccination status, time between vaccination and infection)
- Dynamic variables: Symptom presence and intensity over time (before, during, and after infection)
  - Includes headache, cough, fever, breathing difficulties, muscle pain, loss of smell/taste, etc.

#### **Data Challenges:**

- Substantial **missing and inconsistent data** (common in questionnaire-based studies)
- Evolving questionnaire design during the epidemic → variable phrasing and coverage
- Required extensive standardization to build a uniform analytical dataset

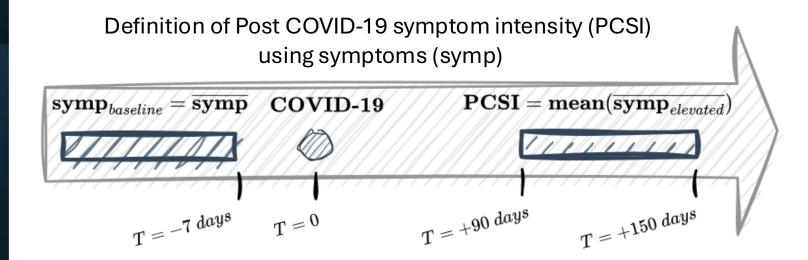
## Defining Post-COVID-19 Symptom Intensity (PCSI)

Definition of Post-Covid Condition based on the WHO one

Symptoms lasting more than 3 months post infection lasting for at least 2 months with no other explanation.

Use of 10 symptoms checked to be related to PCC in a previous study

Extension to a continuous variable by deriving the Post Covid-19 symptom intensity score (PCSI)



# Preprocessing Workflow & Sample Selection

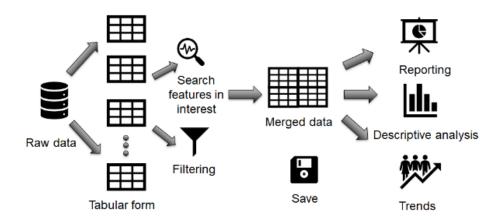
#### **Data Integration:**

- Raw questionnaire data organized by participant and date
- Merged across tables after cleaning and variable harmonization
- Feature extraction based on **pre-infection period** (steady-state hypothesis)

#### **Final Study Sample:**

- 4,657 participants included after filtering for sufficient data
- Comparable baseline characteristics between included and excluded groups
- Sex distribution:
  - Women = 73% of PCC cases vs. 64% in base dataset → higher PCC risk in women
  - Lower PCSI levels show a reduced female proportion

Data preparation strategy



## Statistical Tests

#### **Tests Used:**

- Chi-square test → checks independence between categorical variables (e.g., vaccination & PCSI
- Cramer's V → measures strength of association (0 = weak, 1 = strong)

#### **Vaccination & PCSI:**

- Majority of **fully vaccinated** participants had **low PCSI** (88% scored 1–2)
- Chi-square: significant relationship (p < 0.05)
- Cramer's V = 0.072: weak association strength

#### **Insight:**

 Vaccination status is significantly associated with lower PCC intensity, but the strength of this association is relatively small in practical terms

 $(H_0:Independence\ between\ variables)$ 

 $H_1$ : Dependence between variables

| VACCINIE        | PC_INTENSITY |        |        |        |        |        |
|-----------------|--------------|--------|--------|--------|--------|--------|
| VACCINE         | 1            | 2      | 3      | 4      | 5      | Total  |
| complete vaccin | 2514         | 276    | 225    | 108    | 26     | 3149   |
|                 | 79.8 %       | 8.8 %  | 7.1 %  | 3.4 %  | 0.8 %  | 100 %  |
|                 | 71 %         | 54.9 % | 59.7 % | 54.5 % | 70.3 % | 67.6 % |
| no              | 1028         | 227    | 152    | 90     | 11     | 1508   |
|                 | 68.2 %       | 15.1 % | 10.1 % | 6 %    | 0.7 %  | 100 %  |
|                 | 29 %         | 45.1 % | 40.3 % | 45.5 % | 29.7 % | 32.4 % |
| Total           | 3542         | 503    | 377    | 198    | 37     | 4657   |
|                 | 76.1 %       | 10.8 % | 8.1 %  | 4.3 %  | 0.8 %  | 100 %  |
|                 | 100 %        | 100 %  | 100 %  | 100 %  | 100 %  | 100 %  |

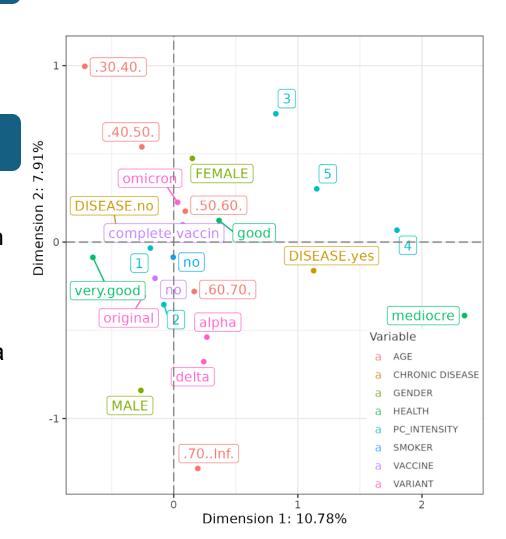
# Multiple Correspondence Analysis (MCA)

#### Method

 MCA was applied to explore simultaneous relationships between multiple categorical variables

#### Key patterns

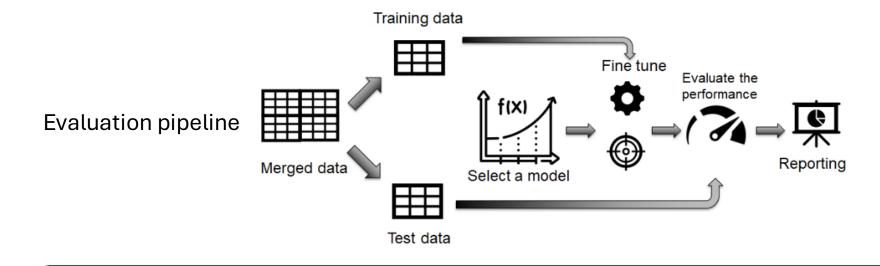
- High PCSI (5) clusters with chronic diseases, poor health, and female sex, indicating higher vulnerability in these groups
- SARS-CoV-2 variant shows weak association with PCC, suggesting a lower impact on long-term symptom intensity
- Participants with better general health are positioned closer to low PCSI levels, indicating a protective effect



# Predictive analysis

#### The model $f: X \to y$

- With  $X \in \mathbb{R}^p$  representing the explanatory variables (features) of dimension p
- And y representing the target variable corresponding to the long covid intensity with  $y \in [1; 5]$



- To be robust to data variation during the training and evaluation , the cross-validation strategy is adopted
- The final results are reported using mean and standard deviation over multiple folds

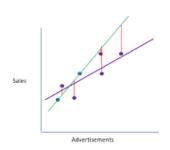
Cross validation

| Training | Val   | Test   |
|----------|-------|--------|
| 60%      | 10%   | /30%// |
|          | ///// |        |
|          | //    |        |
|          |       |        |
|          |       |        |

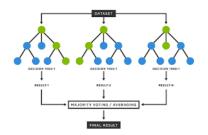
# Methods and evaluation criteria

#### **Evaluated methods**

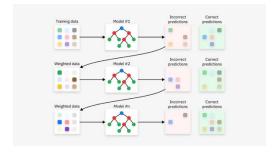
Linear Ridge Regression (LR)



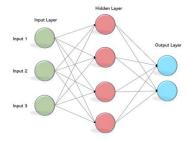
Random Forest (RF)



Gradient Boosting (GB)



Multi-layer Perceptron (MLP)



#### **Evaluation criteria**

- Mean Absolute Error (MAE)
- Mean Squared Error (MSE)
- Mean Absolute Percentage Error (MAPE)
- Pearson Correlation

### Results

- Best performance achieved with "All" features across all methods
- **Symptom-only features** yield similar results for LR, RF, GB; MLP benefits more from full feature sets
- MAE ≈ 0.60 for all models → acceptable error on a 1–5 PCSI scale
- MLP shows lowest MAPE (0.19), minimizing relative errors
- RF and GB yield the highest Pearson correlations, capturing complex linear interactions

Differences reflect **model** strengths:

- RF/GB: strong linear patterns → higher correlations
- MLP: non-linear modeling → better error minimization

|         |             | Evaluation criteria |                |               |              |
|---------|-------------|---------------------|----------------|---------------|--------------|
| Methods | Features    | MAE                 | MSE            | MAPE          | Pearson      |
| LR      | All         | .61 $\pm$ .01       | .68 ± .02      | .29 ± .01     | (.56, 6e-70) |
|         | Static      | $.71 \pm .02$       | $.91 \pm .05$  | $.35 \pm .01$ | (.28, 2e-16) |
|         | Symptoms    | $.62 \pm .02$       | $.70\pm.04$    | $.30 \pm .01$ | (.57, 2e-69) |
|         | Vaccination | $.81 \pm .02$       | $.99\pm.05$    | $.41 \pm .01$ | NaN          |
| RF      | All         | .60 $\pm$ .01       | .67 ± .02      | .28 ± .01     | (.58, 7e-73) |
|         | Static      | $.72 \pm .02$       | $.93 \pm .05$  | $.35 \pm .01$ | (.26, 1e-15) |
|         | Symptoms    | .60 $\pm$ .01       | $.66 \pm .03$  | $.28\pm.01$   | (.57, 5e-72) |
|         | Vaccination | $.79 \pm .02$       | $.99 \pm .06$  | $.39 \pm .01$ | (.04, 1e-1)) |
| GB      | All         | .61 $\pm$ .01       | .66 ± .01      | .28 ± .01     | (.57, 4e-74) |
|         | Static      | $.72 \pm .02$       | $.90\pm.05$    | $.35 \pm .01$ | (.29, 7e-17) |
|         | Symptoms    | .61 $\pm$ .01       | $.68\pm.02$    | $.28 \pm .01$ | (.55, 8e-82) |
|         | Vaccination | $.81 \pm .02$       | $.99 \pm .06$  | $.41 \pm .01$ | (.05, 6e-1)  |
| MLP     | All         | .45 ± .05           | .90 ± .12      | .19 ± .03     | (.25, 3e-18) |
|         | Static      | $.87 \pm .18$       | $1.4\pm.78$    | $.43 \pm .07$ | (.21, 4e-9)  |
|         | Symptoms    | $1.76 \pm .11$      | $.98\pm.38$    | $.34 \pm .05$ | (.43, 5e-33) |
|         | Vaccination | $.80 \pm .03$       | $1.03 \pm .05$ | .41 ± .03     | (.04, 2e-1)  |

### Interpretation

# Linear Regression

#### Top 9 features identified via Linear Regression

- Coefficients show direction & strength of impact on PCSI
- **Positive predictors** (↑ PCC risk):
  - Loss of smell, headache, muscle pain
- Negative predictors (↓ PCC risk):
  - Fever, pain when breathing

#### Insights

• Acute symptoms differ in **predictive value** — some signal higher long-term risk, others appear protective

| Coef | Variable                                             | Coef                                                                                                                                                                          |
|------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.32 | Pain when breathing                                  | -0.58                                                                                                                                                                         |
| 0.28 | Fever (38° or higher)                                | -0.27                                                                                                                                                                         |
| 0.27 | Omicron variant                                      | -0.26                                                                                                                                                                         |
| 0.23 | Heaviness in arms/legs                               | -0.08                                                                                                                                                                         |
| 0.17 | Very good health                                     | -0.07                                                                                                                                                                         |
| 0.16 | No chronic disease                                   | -0.07                                                                                                                                                                         |
| 0.16 | Age group                                            | -0.06                                                                                                                                                                         |
| 0.16 | Smoker                                               | -0.05                                                                                                                                                                         |
| 0.14 | Male                                                 | -0.03                                                                                                                                                                         |
|      | 0.32<br>0.28<br>0.27<br>0.23<br>0.17<br>0.16<br>0.16 | 0.32 Pain when breathing 0.28 Fever (38° or higher) 0.27 Omicron variant 0.23 Heaviness in arms/legs 0.17 Very good health 0.16 No chronic disease 0.16 Age group 0.16 Smoker |

Estimated coefficients of Linear Regression for prediction of post COVID-19 condition

### Interpretation

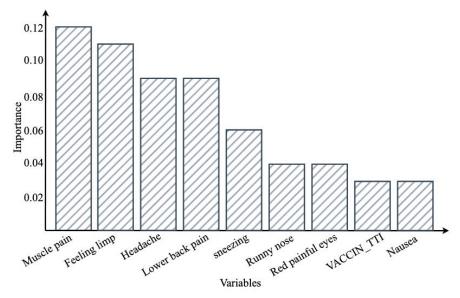
## Random Forest

#### **Top 10 features** identified using **Random Forest**

Shows some overlap with Linear Ridge Regression results, but relative importance differs

#### **Key Predictors:**

- Muscle pain → most important predictor of PCSI
- Time between vaccination and infection (VACCIN\_TTI) → significant impact
- Insight:
  - Vaccination timing may influence PCC risk and severity
  - RF highlights **non-linear interactions** not captured by linear models



### Interpretation

# SHAP values

#### **Top predictors** for PCSI (via SHAP values):

- Positive impact (↑ PCSI): difficulty breathing, diarrhea, fluctuating body temperature, muscle pain, sneezing, smoking
- **Negative impact ( PCSI):** prior vaccination, absence of chronic diseases

#### Other insights:

- Female sex associated with higher PCSI
- Highlights the complex interaction of symptoms, baseline health, and demographics in PCC risk



# Conclusions and perspectives

#### **Study Goal:**

 Identify high-risk PCC profiles and predict Post-COVID Symptom Intensity (PCSI) using ML

#### **Key Findings:**

- **Higher risk:** women, patients with chronic diseases
- Important predictors: loss of smell, headache, muscle pain, vaccination timing
- Protective factors: absence of chronic diseases
- MLP slightly outperformed other models (lower MAPE)

#### **Limitations:**

- Steady-state assumption limits temporal analysis
- Dataset quality and completeness affect performance
- Models complement, **not replace**, clinical judgment

#### **Societal Impact:**

- PCC affects health, daily life, and productivity
- Predicting symptom intensity can guide early interventions and improve patient outcomes

#### References

[1] T. Lancet, The covid-19 pandemic in 2023: Far from over, 2023.

[2] A. V. Ballering, S. K. van Zon, T. C. olde Hartman, and J. G. Rosmalen, "Persistence of somatic symptoms after covid-19 in the netherlands: An observational cohort study," The Lancet, vol. 400, no. 10350, pp. 452–461, 2022

[3] F. Callard and E. Perego, "How and why patients made long covid," Social science & medicine, vol. 268, p. 113 426, 2021.

[4] https://www.who.int/europe/news-room/fact-sheets/item/post-COVID-19-condition.retrieved: September, 2025.

[5] C. E. Hastie et al., "Natural history of long-covid in a nationwide, population cohort study," Nature Communications, vol. 14, no. 1, p. 3504, 2023.

[6] R. Kessler, J. Philipp, J. Wilfer, and K. Kostev, "Predictive attributes for developing long covid—a study using machine learning and real-world data from primary care physicians in germany," Journal of Clinical Medicine, 2023.



Thank you for your attention!

Questions?