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Context &
Motivation

19 global Publlc Health Emergency, marking a new
endemic phase

Recent global estimates suggest a 6-10% prevalence,
down from initial 10-20% WHO estimates

|dentifying populations at risk of PCC is essential for
early referral and optimized care pathways




PCC characterization remains uncertain, with

key challenges:

e Incomplete, retrospective data collected during the evolving

crisis
Resea |’Ch e Focus on hospitalized patients, despite most PCC cases
occurring in non-hospitalized individuals
Cha lle ngeS & e Limited information on pre-existing conditions, complicating

symptom attribution

DEI:

Lifelines Cohort offers a unique opportunity:

Opportunity

* 167,729 participants from Northern Netherlands across three
generations

e COVID-19 branch (Apr 2020 - Nov 2022):
e 31 questionnaires, weekly to bi-monthly
e 76,503 respondents, average 13.5 questionnaires each

e Rich longitudinal data enable analysis of pre-infection factors
and PCC trajectories




Research Question:

e Can pre-infection parameters predict the severity of Post-
COVID-19 Condition?

Approach:

e Introduce Post-COVID-19 Symptom Intensity (PCSI) as a
continuous measure of PCC severity

A| m & e Apply machine learning models to Lifelines data to predict
PCSI and identify risk factors

Contributions

Statistical identification of influential factors associated with
PCC

Predictive modeling of PCSI using data-driven techniques
Interpretation of variable impact for medical decision-making

Development of an open-source Python package for
reproducible ML analysis




Dataset

Overview

Two main variable types:

e Static variables: Fixed individual attributes (e.g., age, sex,
variant, income, smoking, chronic diseases, vaccination
status, time between vaccination and infection)

e Dynamic variables: Symptom presence and intensity over
time (before, during, and after infection)

e Includes headache, cough, fever, breathing difficulties,
muscle pain, loss of smell/taste, etc.

Data Challenges:

e Substantial missing and inconsistent data (common in
questionnaire-based studies)

e Evolving questionnaire design during the epidemic >
variable phrasing and coverage

e Required extensive standardization to build a uniform
analytical dataset




Defining Post-
COVID-19
Symptom

Intensity (PCSI)

Definition of Post-Covid Condition based on the WHO one

Symptoms lasting more than 3 months post infection lasting for at least 2
months with no other explanation.

Use of 10 symptoms checked to be related to PCC in a previous study

Extension to a continuous variable by deriving the Post Covid-19 symptom
intensity score (PCSI)

Definition of Post COVID-19 symptom intensity (PCSI)
using symptoms (symp)

symp baseline — S}rimp C OVID' 19 P C SI = mean (m)



Data Integration:

e Raw questionnaire data organized by participant and date

e Merged across tables after cleaning and variable harmonization

e Feature extraction based on pre-infection period (steady-state
hypothesis)

Preprocessing

Final Study Sample:

WO I’kﬂOW & * 4,657 participants included after filtering for sufficient data
Sample

e Comparable baseline characteristics between included and
excluded groups
e Sex distribution:
e Women =73% of PCC cases vs. 64% in base dataset > higher
PCC risk in women
e Lower PCSI levels show a reduced female proportion

Selection
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e Chi-square test > checks independence between categorical variables (e.g.,
vaccination & PCSI

e Cramer's V > measures strength of association (0 = weak, 1 = strong)

Vaccination & PCSI:

e Majority of fully vaccinated participants had low PCSI (88% scored 1-2)
e Chi-square: significant relationship (p < 0.05)
e Cramer's V =0.072: weak association strength

Te StS e VVaccination status is significantly associated with lower PCC intensity, but the
strength of this association is relatively smallin practical terms

Statistical

PC_INTENSITY

VACCINE 1 2 3 4 5 Total

2514 276 225 108 26 3149
complete vaccin 79.8% 88% 7.1% 34% 08% 100%

. 71% 54.9% 59.7% 54.5% 70.3% 67.6%

Hy: Independence between variables ) ’ e
1028 227 152 90 11 1508
. no 68.2% 151% 101% 6% 0.7% 100 %
Hy: Dependence between variables 20% 451% 403% 455% 29.7% 32.4 %
3542 503 377 198 37 4657
Total 761% 108% 81% 43% 08% 100%

100% 100% 100% 100% 100% 100 %

x°=81.995 - df=4 - Cramer's V=0.133 - p=0.000




« MCA was applied to explore

simultaneous relationships
between multiple categorical ]
variables
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Themodel f: X -y

* With X € R? representing the explanatory variables (features) of dimension p

* And y representing the target variable corresponding to the long covid intensity with
y € [1;5]

Training data

Fine tune
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Reporting

analysis

* To berobustto data variation during the training and evaluation , the cross-validation
strategy is adopted

* The final results are reported using mean and standard deviation over multiple folds
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Evaluated methods

* Linear Ridge Regression (LR) ¢ Gradient Boosting (GB)
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Evaluation criteria

* Mean Absolute Error (MAE)

* Mean Squared Error (MSE)

* Mean Absolute Percentage Error (MAPE)
* Pearson Correlation




* Best performance achieved with “All” features across all methods

* Symptom-only features yield similar results for LR, RF, GB; MLP
benefits more from full feature sets

* MAE = 0.60 for all models > acceptable error on a 1-5 PCSI scale
* MLP shows lowest MAPE (0.19), minimizing relative errors

* RF and GB yield the highest Pearson correlations, capturing complex
linear interactions

Differences reflect model Evaluation criteia
Methods | Features MAE MSE MAPE Pearson
strengths: All 61 &+ .01 | .68 &+ .02 | .29 £ .01 | (.56, 6e-70)
R e S u lts _ LR | Sttic 714+ .02 | 91405 | 35+ 01| (28, 2e-16)
 RF/GB: strong linear patterns > Symptoms | .62 £ .02 | .70 £ .04 | .30 & .01 | (.57, 2e-69)
Vaccination | .81 & .02 | .99 4 05 41 £+ .01 NaN
hi gher correlations All 60 = .01 | .67 &+ .02 | .28 + .01 | (:58, 7e-73)
Static 724+ .02 | 934+ .05 | 35+ .01 | (.26, le-15)
e MLP: non-linear modeling - RE 1 Symptoms | .60 = .01 | .66 + .03 | 28 + .01 | (57, 5¢-72)
S Vaccination | .79 £ .02 | .99 £+ .06 | .39 + .01 | (.04, le-1))
better error minimization All 61 £ .01 566 £.01" .28 + .01 | (.57, 4e-74)
GB Static 724 .02 | 90+ .05 | .35+ .01 | (.29, 7e-17)
Symptoms | .61 + .01 | .68 + .02 | 28 + .01 | (.55, 8e-82)
Vaccination | .81 & .02 | 99 + .06 | .41 + .01 | (.05, 6e-1)
All 45 £.05| 90 + .12 [19£.03 | (.25, 3e-18)
MLp | Static 874+ .18 | 1.4+ .78 | 43 £ .07 | (21, 4e-9)
Symptoms | .76 & .11 | .98 + 38 | .34 + .05 | (.43, 5¢-33)
Vaccination | .80 + .03 | 1.03 £ .05 | 41 + .03 | (.04, 2e-1)

COMPARISON BETWEEN VARIOUS INTRODUCED MODELS AND
FEATURES COMBINATION FOR PREDICTION OF PCSI




Top 9 features identified via Linear Regression

e Coefficients show direction & strength of impact on PCSI
e Positive predictors (™ PCC risk):
e Loss of smell, headache, muscle pain

I nte rp retatlon e Negative predictors (v PCC risk):

e Fever, pain when breathing

Linear

e Acute symptoms differ in predictive value — some signal higher long-term

RegreSS|On risk, others appear protective

Variable Coef | Variable Coef

Loss of sense of smell/taste  0.32 Pain when breathing  -0.58
Headache 0.28 | Fever (38° or higher) -0.27

Muscle pain/aches 0.27 Omicron variant -0.26
Lower back pain 0.23 | Heaviness in arms/legs -0.08
Original variant 0.17 Very good health -0.07
Feeling warm & cold 0.16 No chronic disease -0.07
Red, painful eyes 0.16 Age group -0.06
Sneezing 0.16 Smoker -0.05
Difficulty breathing 0.14 Male -0.03

Estimated coefficients of Linear Regression for
prediction of post COVID-19 condition




Top 10 features identified using Random Forest

e Shows some overlap with Linear Ridge Regression results, but relative

importance differs
Key Predictors:

e Muscle pain > mostimportant predictor of PCSI

I nte rp retatl O n * Time between vaccination and infection (VACCIN_TTI) > significant impact

e Insight:
e VVaccination timing may influence PCC risk and severity

e RF highlights non-linear interactions not captured by linear models
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Feature importances resulted using Random Forest
model for prediction of PCSI




Top predictors for PCSI (via SHAP values):

e Positive impact (® PCSI): difficulty breathing, diarrhea, fluctuating body
temperature, muscle pain, sneezing, smoking

* Negative impact (¥ PCSI): prior vaccination, absence of chronic diseases

Other insights:

Interpretation

* Female sex associated with higher PCSI

e Highlights the complex interaction of symptoms, baseline health, and
demographics in PCC risk

SHAP -

Smoking yes
V a l u e S Gender female
Chronic disease
Delta variant
Feeling warm & cold Interpreting MLP influential
Sneezing factors using
Muscle pain SHAP values
No vaccine
Diarrhea
Difficulty breathing

SHAP value




Conclusions
and

perspectives

Study Goal:

¢ |dentify high-risk PCC profiles and predict Post-COVID Symptom
Intensity (PCSI) using ML

e Higher risk: women, patients with chronic diseases

e Important predictors: loss of smell, headache, muscle pain,
vaccination timing

¢ Protective factors: absence of chronic diseases
e MLP slightly outperformed other models (lower MAPE)

e Steady-state assumption limits temporal analysis
e Dataset quality and completeness affect performance
e Models complement, notreplace, clinical judgment

Societal Impact:

e PCC affects health, daily life, and productivity

e Predicting symptom intensity can guide early interventions and improve
patient outcomes
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Thank you for your attention!

Questions?
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